Source code for gffutils.helpers

import copy
import sys
import os
import simplejson as json
import time
import tempfile
from gffutils import constants
from gffutils import bins
import gffutils
from gffutils import gffwriter
from gffutils import parser
from gffutils.attributes import dict_class

HERE = os.path.dirname(os.path.abspath(__file__))


[docs] def example_filename(fn): """ Return the full path of a data file that ships with gffutils. """ return os.path.join(HERE, "test", "data", fn)
[docs] def infer_dialect(attributes): """ Infer the dialect based on the attributes. Parameters ---------- attributes : str A single attributes string from a GTF or GFF line Returns ------- Dictionary representing the inferred dialect """ attributes, dialect = parser._split_keyvals(attributes) return dialect
def _choose_dialect(features): """ Given a list of features (often from peeking into an iterator), choose a dialect to use as the "canonical" version. If `features` is an empty list, then use the default GFF3 dialect Parameters ---------- features : iterable iterable of features Returns ------- dict """ # NOTE: can use helpers.dialect_compare if you need to make this more # complex.... if len(features) == 0: return constants.dialect # Structure of `count` will be, e.g., # # { # 'keyval separator': {'=': 35}, # 'trailing semicolon': {True: 30, False: 5}, # ...(other dialect keys here)... # } # # In this example, all features agreed on keyval separeator. For trailing # semicolon, there was a higher weight for True, so that will be selected # for the final dialect. count = {k: {} for k in constants.dialect.keys()} for feature in features: # Number of attributes is currently being used as the weight for # dialect selection. That is, more complex attribute strings are more # likely to be informative when determining dialect. This is important # for e.g., #128, where there is equal representation of long and short # attributes -- but only the longer attributes correctly have "; # " field separators. weight = len(feature.attributes) for k, v in feature.dialect.items(): if isinstance(v, list): v = tuple(v) val = count[k].get(v, 0) # Increment the observed value by the number of attributes (so more # complex attribute strings have higher weight in determining # dialect) count[k][v] = val + weight final_dialect = {} for k, v in count.items(): # Tuples of (entry, total weight) in descending sort vs = sorted(v.items(), key=lambda x: x[1], reverse=True) # So the first tuple's first item is the winning value for this dialect # key. final_dialect[k] = vs[0][0] # For backwards compatibility, to figure out the field order to use for the # dialect we append additional fields as they are observed, giving priority # to attributes that come first in earlier features. The alternative would # be to give preference to the most-common order of attributes. final_order = [] for feature in features: for o in feature.attributes.keys(): if o not in final_order: final_order.append(o) final_dialect["order"] = final_order return final_dialect def make_query( args, other=None, limit=None, strand=None, featuretype=None, extra=None, order_by=None, reverse=False, completely_within=False, ): """ Multi-purpose, bare-bones ORM function. This function composes queries given some commonly-used kwargs that can be passed to FeatureDB methods (like .parents(), .children(), .all_features(), .features_of_type()). It handles, in one place, things like restricting to featuretype, limiting to a genomic range, limiting to one strand, or returning results ordered by different criteria. Additional filtering/subsetting/sorting behavior should be added here. (Note: this ended up having better performance (and flexibility) than sqlalchemy) This function also provides support for additional JOINs etc (supplied via the `other` kwarg) and extra conditional clauses (`extra` kwarg). See the `_QUERY` var below for the order in which they are used. For example, FeatureDB._relation uses `other` to supply the JOIN substatment, and that same method also uses `extra` to supply the "relations.level = ?" substatment (see the source for FeatureDB._relation for more details). `args` contains the arguments that will ultimately be supplied to the sqlite3.connection.execute function. It may be further populated below -- for example, if strand="+", then the query will include a strand clause, and the strand will be appended to the args. `args` can be pre-filled with args that are passed to `other` and `extra`. """ _QUERY = "{_SELECT} {OTHER} {EXTRA} {FEATURETYPE} " "{LIMIT} {STRAND} {ORDER_BY}" # Construct a dictionary `d` that will be used later as _QUERY.format(**d). # Default is just _SELECT, which returns all records in the features table. # (Recall that constants._SELECT gets the fields in the order needed to # reconstruct a Feature) d = dict( _SELECT=constants._SELECT, OTHER="", FEATURETYPE="", LIMIT="", STRAND="", ORDER_BY="", EXTRA="", ) if other: d["OTHER"] = other if extra: d["EXTRA"] = extra # If `other` and `extra` take args (that is, they have "?" in them), then # they should have been provided in `args`. required_args = (d["EXTRA"] + d["OTHER"]).count("?") if len(args) != required_args: raise ValueError("Not enough args (%s) for subquery" % args) # Below, if a kwarg is specified, then we create sections of the query -- # appending to args as necessary. # # IMPORTANT: the order in which things are processed here is the same as # the order of the placeholders in _QUERY. That is, we need to build the # args in parallel with the query to avoid putting the wrong args in the # wrong place. if featuretype: # Handle single or iterables of featuretypes. # # e.g., "featuretype = 'exon'" # # or, "featuretype IN ('exon', 'CDS')" if isinstance(featuretype, str): d["FEATURETYPE"] = "features.featuretype = ?" args.append(featuretype) else: d["FEATURETYPE"] = "features.featuretype IN (%s)" % ( ",".join(["?" for _ in featuretype]) ) args.extend(featuretype) if limit: # Restrict to a genomic region. Makes use of the UCSC binning strategy # for performance. # # `limit` is a string or a tuple of (chrom, start, stop) # # e.g., "seqid = 'chr2L' AND start > 1000 AND end < 5000" if isinstance(limit, str): seqid, startstop = limit.split(":") start, end = startstop.split("-") else: seqid, start, end = limit # Identify possible bins _bins = bins.bins(int(start), int(end), one=False) # Use different overlap conditions if completely_within: d["LIMIT"] = ( "features.seqid = ? AND features.start >= ? " "AND features.end <= ?" ) args.extend([seqid, start, end]) else: d["LIMIT"] = ( "features.seqid = ? AND features.start <= ? " "AND features.end >= ?" ) # Note order (end, start) args.extend([seqid, end, start]) # Add bin clause. See issue #45. if len(_bins) < 900: d["LIMIT"] += " AND features.bin IN (%s)" % (",".join(map(str, _bins))) if strand: # e.g., "strand = '+'" d["STRAND"] = "features.strand = ?" args.append(strand) # TODO: implement file_order! valid_order_by = constants._gffkeys_extra + ["file_order", "length"] _order_by = [] if order_by: # Default is essentially random order. # # e.g. "ORDER BY seqid, start DESC" if isinstance(order_by, str): _order_by.append(order_by) else: for k in order_by: if k not in valid_order_by: raise ValueError( "%s not a valid order-by value in %s" % (k, valid_order_by) ) # There's no length field, so order by end - start if k == "length": k = "(end - start)" _order_by.append(k) _order_by = ",".join(_order_by) if reverse: direction = "DESC" else: direction = "ASC" d["ORDER_BY"] = "ORDER BY %s %s" % (_order_by, direction) # Ensure only one "WHERE" is included; the rest get "AND ". This is ugly. where = False if "where" in d["OTHER"].lower(): where = True for i in ["EXTRA", "FEATURETYPE", "LIMIT", "STRAND"]: if d[i]: if not where: d[i] = "WHERE " + d[i] where = True else: d[i] = "AND " + d[i] return _QUERY.format(**d), args def _bin_from_dict(d): """ Given a dictionary yielded by the parser, return the genomic "UCSC" bin """ try: start = int(d["start"]) end = int(d["end"]) return bins.bins(start, end, one=True) # e.g., if "." except ValueError: return None def _jsonify(x): """Use most compact form of JSON""" if isinstance(x, dict_class): return json.dumps(x._d, separators=(",", ":")) return json.dumps(x, separators=(",", ":")) def _unjsonify(x, isattributes=False): """Convert JSON string to an ordered defaultdict.""" if isattributes: obj = json.loads(x) return dict_class(obj) return json.loads(x) def _feature_to_fields(f, jsonify=True): """ Convert feature to tuple, for faster sqlite3 import """ x = [] for k in constants._keys: v = getattr(f, k) if jsonify and (k in ("attributes", "extra")): x.append(_jsonify(v)) else: x.append(v) return tuple(x) def _dict_to_fields(d, jsonify=True): """ Convert dict to tuple, for faster sqlite3 import """ x = [] for k in constants._keys: v = d[k] if jsonify and (k in ("attributes", "extra")): x.append(_jsonify(v)) else: x.append(v) return tuple(x)
[docs] def asinterval(feature): """ Converts a gffutils.Feature to a pybedtools.Interval """ import pybedtools return pybedtools.create_interval_from_list(str(feature).split("\t"))
[docs] def merge_attributes(attr1, attr2, numeric_sort=False): """ Merges two attribute dictionaries into a single dictionary. Parameters ---------- `attr1`, `attr2` : dict numeric_sort : bool If True, then attempt to convert all values for a key into floats, sort them numerically, and return the original strings in numerical order. Default is False for performance. Returns ------- dict """ new_d = copy.deepcopy(attr1) new_d.update(copy.deepcopy(attr2)) # all of attr2 key : values just overwrote attr1, fix it for k, v in new_d.items(): if not isinstance(v, list): new_d[k] = [v] for k, v in attr1.items(): if k in attr2: if not isinstance(v, list): v = [v] new_d[k].extend(v) if not numeric_sort: return dict((k, sorted(set(v))) for k, v in new_d.items()) final_d = {} for key, values in new_d.items(): try: # I.e.: # # ['5', '4.2'] # # becomes the sorted tuples: # # [(4.2, '4.2'), ('5.0', '5')] # # from which original strings are pulled to get the # numerically-sorted strings, # # ['4.2', '5'] sorted_numeric = sorted([(float(v), v) for v in set(values)]) new_values = [i[1] for i in sorted_numeric] except ValueError: # E.g., not everything was able to be converted into a number new_values = sorted(set(values)) final_d[key] = new_values return final_d
def dialect_compare(dialect1, dialect2): """ Compares two dialects. """ orig = set(dialect1.items()) new = set(dialect2.items()) return dict( added=dict(list(new.difference(orig))), removed=dict(list(orig.difference(new))) )
[docs] def sanitize_gff_db(db, gid_field="gid"): """ Sanitize given GFF db. Returns a sanitized GFF db. Sanitizing means: - Ensuring that start < stop for all features - Standardizing gene units by adding a 'gid' attribute that makes the file grep-able TODO: Do something with negative coordinates? """ def sanitized_iterator(): # Iterate through the database by each gene's records for gene_recs in db.iter_by_parent_childs(): # The gene's ID gene_id = gene_recs[0].id for rec in gene_recs: # Fixup coordinates if necessary if rec.start > rec.stop: rec.start, rec.stop = rec.stop, rec.start # Add a gene id field to each gene's records rec.attributes[gid_field] = [gene_id] yield rec # Return sanitized GFF database sanitized_db = gffutils.create_db(sanitized_iterator(), ":memory:", verbose=False) return sanitized_db
def sanitize_gff_file(gff_fname, in_memory=True, in_place=False): """ Sanitize a GFF file. """ db = None if is_gff_db(gff_fname): # It's a database filename, so load it db = gffutils.FeatureDB(gff_fname) else: # Need to create a database for file if in_memory: db = gffutils.create_db(gff_fname, ":memory:", verbose=False) else: db = get_gff_db(gff_fname) if in_place: gff_out = gffwriter.GFFWriter(gff_fname, in_place=in_place) else: gff_out = gffwriter.GFFWriter(sys.stdout) sanitized_db = sanitize_gff_db(db) for gene_rec in sanitized_db.all_features(featuretype="gene"): gff_out.write_gene_recs(sanitized_db, gene_rec.id) gff_out.close()
[docs] def annotate_gff_db(db): """ Annotate a GFF file by cross-referencing it with another GFF file, e.g. one containing gene models. """ pass
def is_gff_db(db_fname): """ Return True if the given filename is a GFF database. For now, rely on .db extension. """ if not os.path.isfile(db_fname): return False if db_fname.endswith(".db"): return True return False def to_unicode(obj, encoding="utf-8"): if isinstance(obj, str): if not isinstance(obj, str): obj = str(obj, encoding) return obj def canonical_transcripts(db, fasta_filename): """ WARNING: this function is currently not well ttested and will likely be replaced with a more modular approach. """ import pyfaidx fasta = pyfaidx.Fasta(fasta_filename, as_raw=False) for gene in db.features_of_type("gene"): # exons_list will contain (CDS_length, total_length, transcript, [exons]) tuples. exon_list = [] for ti, transcript in enumerate(db.children(gene, level=1)): cds_len = 0 total_len = 0 exons = list(db.children(transcript, level=1)) for exon in exons: exon_length = len(exon) if exon.featuretype == "CDS": cds_len += exon_length total_len += exon_length exon_list.append( ( cds_len, total_len, transcript, exons if cds_len == 0 else [ e for e in exons if e.featuretype in ["CDS", "five_prime_UTR", "three_prime_UTR"] ], ) ) # If we have CDS, then use the longest coding transcript if max(i[0] for i in exon_list) > 0: best = sorted(exon_list, key=lambda x: x[0], reverse=True)[0] # Otherwise, just choose the longest else: best = sorted(exon_list, key=lambda x: x[1])[0] print(best) canonical_exons = best[-1] transcript = best[-2] seqs = [ i.sequence(fasta) for i in sorted( canonical_exons, key=lambda x: x.start, reverse=transcript.strand != "+" ) ] yield transcript, "".join(seqs) ## ## Helpers for gffutils-cli ## ## TODO: move clean_gff here? ## def get_gff_db(gff_fname, ext=".db"): """ Get db for GFF file. If the database has a .db file, load that. Otherwise, create a named temporary file, serialize the db to that, and return the loaded database. """ if not os.path.isfile(gff_fname): # Not sure how we should deal with errors normally in # gffutils -- Ryan? raise ValueError("GFF %s does not exist." % (gff_fname)) candidate_db_fname = "%s.%s" % (gff_fname, ext) if os.path.isfile(candidate_db_fname): # Standard .db file found, so return it return candidate_db_fname # Otherwise, we need to create a temporary but non-deleted # file to store the db in. It'll be up to the user # of the function the delete the file when done. ## NOTE: Ryan must have a good scheme for dealing with this ## since pybedtools does something similar under the hood, i.e. ## creating temporary files as needed without over proliferation db_fname = tempfile.NamedTemporaryFile(delete=False) # Create the database for the gff file (suppress output # when using function internally) print("Creating db for %s" % (gff_fname)) t1 = time.time() db = gffutils.create_db( gff_fname, db_fname.name, merge_strategy="merge", verbose=False ) t2 = time.time() print(" - Took %.2f seconds" % (t2 - t1)) return db